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Abstract' 
An efficient assignment of tasks to the processors is 

imperative for achieving a fast job turnaround time in a 
parallel or distributed enviornment. The assignment 
problem is well known to be NP-complete, except in a few 
special cases. Thus heuristics are used to obtain 
suboptimal solutions in reasonable amount of time. While 
a plethora of such heuristics have been documented in the 
literature, in this paper we aim to develop techniques for 
finding optimal solutions under the most relaxed 
assumptions. We propose a best-first search based parallel 
algorithm that generates optimal solution for assigning an 
arbitrary task graph to an arbitrary network of 
homogeneous or heterogeneous processors. The parallel 
algorithm running on the Intel Paragon gives optimal 
assignments for problems of medium to large sizes. We 
believe our algorithms to be novel in solving an 
indispensable problem in parallel and distributed 
computing. 

Keywords: Best-first search, parallel processing, task 
assignment, mapping, distributed systems. 

1 Introduction 
Given a parallel program represented by a task graph 

and a network of processors also represented as a graph, 
the problem of assigning tasks to processors is known as 
the allocation problem or mapping problem [l]. In this 
problem, the assignment of tasks to processors is done in a 
static fashion, and the main goal is to assign equal amount 
of load to all the processors and reduce the overhead of 
interactjon among them. The problem, however, is a well 
known to be NP-hard [5],  and has been a focus of attention 
due to its importance and complexity. A considerable 
amount of research effort using a variety of techniques has 
been reported in the literature. 

The assignment problem is an optimization problem, 
and the cost function to be optimized depends on the 
assumptions made about the application model and 
hardware details (system topology, communication 
bandwidth, and the possibility of overlapping different 
functions). The system may be a parallel machine or a 
network of workstations connected as a virtual parallel 
machine (such as in the computing model o f  PVM or 
MPI). A heterogeneous system (i.e., the processors are of 
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different speeds) adds more constraints to the assignment 
problem. In general, without making strict assumptions, 
the assignment algorithm can be computationally very 
extensive. 

The approaches used to solve the task assignment 
problem for optimal or suboptimal solutions can be 
classified as graph theoretic [ 13 1141, simulated annealing 
[8], genetic techniques [6] ,  [7], solution space enumeration 
and search [ 131 [ 151, mathematical programming [ 1 I], and 
heuristics [ 3 ] ,  [9]. Most of the reported solutions are based 
on heurtistics, and optimal solutions exist only for 
restricted cases or small problem sizes. 

The contribution of this paper is a best-first search- 
based parallel algorithm that generates optimal solution for 
assigning an arbitrary task graph to an arbitrary network of 
homogeneous or heterogeneous processors. The algorithm 
running on the Intel Paragon gives optimal mappings with 
a good speed-up. 

The rest of this paper is organized as follows. In the 
next section, we define the assignment problem. In Section 
3, we give an overview of the A* search technique which 
is the basis of our proposed algorithm. In Section 4, we 
present the proposed algorithm. Section 5 includes the 
experimental results, and the last section concludes the 
paper. 

2 Problem Definition 
A parallel program can be partitioned into a set of m 

communicating tasks represented by an undirected graph 
GT = (VT, ET) where VT is the set of vertices, { t I ,  tz,.., tm} ,  
and ET is a set of edges labelled by the communication 
costs between the vertices. The interconnection network of 
n processors, (p,,p2,..,pn} is represented by an n*n matrix 
L, where an entry Lv is 1 if the processors i and j are 
connected, and 0 otherwise. 

A task ti from the set VT can be executed on any one of 
the n processors of the system. Each task has an execution 
cost associated with it on a given processor. The execution 
costs of the tasks are given by a matrix X; where Xi, is the 
execution cost of task i on processor p .  When two tasks tl 
and t, executing on two different processors need to 
exchange data, a communications cost will be incurred. 

The communication among tthe asks is represented by 
a matrix C, where C,, is the communication cost between 
task i andj  if they reside on two different processors. The 
load on a processor is a combination of all the execution 
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and communication costs associated with the tasks 
assigned to it. The total completion time of the entire 
program will be the time needed by the heaviest loaded 
processor. 

Task assignment problem is to find a mapping of the 
set of m tasks to n processors such that the total completion 
time is minimized. Mapping or assignment of tasks to 
processors is given by a matrix A, where Ai, is 1 if task i is 
assigned to processor p and 0 otherwise. The load on a 
processor p is given by 

m n m m  

t 2  

t3 

ta 

( P  f 4 )  

The first part of the equation is the total execution cost 
of the tasks assigned to processor p, and second part is the 
communication overhead on p .  

In order to find the processor with the heaviest load, the 
load on each of the n processors needs to be computed. The 
optimal assignment now will be the one which results in 
the minimum load on the heaviest loaded processor among 
all the assignments. There are nm possible assignments, 
and finding the optimal assignment is known to be an NP- 
hard problem [5]. 

3 Overview of the A* Technique 

16 13 6 

5 4 3 

10 9 7 

A* is a bestfirst search algorithm [ 101 which has been 
used to solve optimization problems in artificial 
intelligence as well as other areas. The algorithm 
constructs the problem as a search tree. It then searches the 
nodes of the tree starting from the root called the start node 
(usually a null solution). Intermediate nodes represent the 
partial solutions while the complete solutions or goals are 
represented by the leaf nodes. Associated with each node 
is a cost which is computed by a cost function$ 

The nodes are ordered for search according to this cost, 
that is, a node with the minimum cost is searched first. The 
value off for a node n is computed as fln) = g(n) + h(n) 
where g(n) is the cost of the search path from the start node 
to the current node n; h(n) is a lower bound estimate of the 
path cost from node n to the goal node (solution). 

The algorithm maintains a sorted list of nodes 
(according to thefvalues of the nodes) and always selects 
a node with the best cost for expansion. Expansion of a 
node is to generate all of its successors or children. Since 
the algorithm always selects the best cost node, it 
guarantees an optimal solution. 
3.1 The Sequential Approach 

In this study we will use the A* technique for 
assignment problem and call it the Optimal Assignment 
with Sequential Search (OASS) algorithm. The OASS 
algorithm is described as follows: 

(1) Build initial node s and insert it into the list OPEN 
(2) Setfls) = 0 
(3) Repeat 
(4) 
(5)  if (n o Solution) 
(6)  Generate successors of n 
(7) 
(8) 
(9) 
(1 0) 
(1 1) 
(12) end for 
(13) end if 
(14)if (n = Solution) 
(15) 
(16)UntiI (n is a Solution) or (OPEN is empty) 

Shen and Tsai [13] formulated a state-space search 
algorithm for optimal assignments. In this formulation 
each node in the search tree represents an partial 
assignment and a goal node represents a complete 
assignment. The algorithm A* is then applied to traverse 
the search space. 

A subsequent study by Ramakrishnan [ 131 showed that 
the order in which tasks are considered for allocation has a 
great impact on the performance of the algorithm (for the 
cost function used)Their study indicated that a significant 
performance improvement can be achieved by a careful 
ordering of tasks. They proposed a number of heuristics 
out of which the so called minimar sequencing heuristic 
has been shown to perform the best. 

Given a set of 5 tasks, (to, tl, t2, t3, t4} and a set of 3 
processors ( po, pl, p2) as shown in Figure 1, the resulting 

Select the node n with smallestfvalue. 

for each successor node n ’ do 
if (n’ is not at the last level in the search tree) 

else f ln ’) = g(n ’) 
Insert n’ into OPEN 

fln ’) = g(n ’) + h(n ’) 

Report the solution and Stop 

Processor graph 

Figure 1: An example task graph and a processor 
and the network, execution costs of tasks on 
various processors. 
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t3 --> pl  
t4 --> p2 Figure 2: Search tree for the example problem. 

(nodes generated = 39, nodes expanded = 13). 

search trees is given in Figure 2. A node in the search to toPo (y)xxxx,) 
tree the partial assignment Of tasks to to 30. The g(n) in this case equals 15 which is the cost of 
PrOCeSSorSi and the Of f (cost Of partial executing to on po. The h(n) in this case also equals 15 

The Of tasks to which is the sum of minimum of the execution or 
P*ocessors is indicated by an m digit string ’a@l***umm- communication costs of tI and t4 (tasks communicating 
1’. where ai ( 5 * - represents the processor (O with to). The costs of assigning to to p 1  (26) and to to p z  
to n - 1 1 to which ith task has A (24) are calculated in a similar fashion. Theses three nodes 
partial assignment means that e tasks are are inserted to the list OPEN. Since 24 is the minimum 
unassigned; the value of ai equ ’x’ indicates that cost, the node ‘ 2 x x ~ ’  is selected for expansion.The 
ith task has not b e n  assigned Each level Of the search continues until the node with the complete 
tree corresponds to a task, thus acing an ‘x’ value assi (‘20112’) is selected for expansion. At this 
in the assignment string with some ~rocessor poi his is the node with a complete assignment and 
number. Node expansion is to add the assignment of the um costs, it is the goal node. Notice that all 
a new task to the partial assignment. n u s  the depth ass strings are unique. A total of 39 nodes are 
( d )  of the search tree is to the number Of tasks generated and 13 nodes are expanded. In 
m/ and node Of the tree can have a maximum Of exhaustive search will generate nm = 243 nod 
n (no of processors) successors. find the optimal solution. The minimax sequence 

nassigned tasks generated is {to, tl, t.2, t4, t31. therefore, t4 has been 
‘XXXXX’ . For example i locations of to considered before t3. 

(‘2XXXX’) are considered 4 The Parallelizing Approach 

in the total costfin) 

The root node includes the set of 

to po ( ‘ O x x x x ‘ ) ,  to to 

assignments at the first level of the tree. The assignment of 
To distinguish the processors on which the parallel task 
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assignment algorithm is running from the processors in the 
problem domain, we will denote the former with the 
abbreviation PE (processing element which in our case is 
the Intel Paragon processor). We call our parallel 
algorithm the Optimal Assignment with Parallel Search 
(OAPS) algorithm. First we describe the initial 
partitioning and dynamic load balancing strategies. 
4.1 Initial Partitioning 

Initially the search space is divided statically based on 
the number of processing elements (PES) P in the system 
and the maximum number of successors S of a node in the 
search tree. There could be three situations: Case 1) P< S: 
Each PE will expand only the initial node which results in 
S new nodes. Each PE will get one node and get additional 
nodes in Round Robin (RR) fashion. Case 2) P = S: Only 
initial node will be expanded and each PE will get one 
node. Case 3) P > S: Each PE will keep expanding nodes 
starting from the initial node until the number of nodes in 
the list are greater than or equal to P. List is sorted in 
increasing order of cost values of the nodes. First node in 
the list will go to PE,, second node will go to PEp, third 
node goes to PE2,4th node goes to PE,,-, and so on. Extra 
nodes will be distributed using RR. (Although there is no 
guarantee that a best cost node will lead to good cost node 
after some expansions but still algorithm tries to initially 
distribute the good nodes as evenly as possible among the 
PES). If a solution is found during this process, the 
algorithm will terminate. Note that there is no master PE 
which generates first the nodes and then distribute among 
other PES. 
4.2 Dynamic Load Balancing 

If there is no communication between the PES after the 
initial static assignment, some of them may work on good 
part of the search space, while others may expand 
unnecessary nodes (the nodes which the serial algorithm 
will not expand). This will result in a poor speed up. To 
avoid this, PES need to communicate to share the best part 
of the search space and to avoid unneccessary work. In our 
formulation, a PE achieves this explicitly using a round 
robin (RR) communication strategy within its 
neighbourhood, and implicitly by broadcasting its solution 
to all PES. 

In steps 13-16 of the algorithm, a PE periodically 
(when OPEN increases by a threshold U) selects a 
neighbour in RR fashion and then sends its best node to 
that neighbour. This will achieve the sharing of best part of 
the search space within neighbourhood. Aside from this 
load balancing, a PE also broadcast its solution (when it 
finds one) to all PES. This will help in avoiding the 
unnecessary work for a PE which is working on the bad 
part of the search space. Since once a node receives a better 
cost solution than its current best node, it will stop 
expanding the unnecessary nodes. A solution is 
broadcasted only if its cost i s  better than an earlier solution 
received from any other PE. The OAPS algorithm is 
described below: 

The OAPS Algorithm: 
(1) Init- Partition() 
(2) SetUp-Neighborhood() 
(3) Repeat 
(4) 
(5) if (a Solution found) 
(6) 
(7) 
(8) else 
(9) 
(10) end if 
(11) Record the Solution and Stop 
(12) end if 
(1 3) If (OPEN’S length increases by a threshold U) 
(14) Select a neighbor PE j using RR 
(1 5 )  Send the current best node from OPEN to j 
(16) end if 
(17) If (Received a node from a neighbor) 
(18) Insert it to OPEN 
(19) if (Received a Solution from a PE) 
(20) Insert it to OPEN 
(21) if (Sender is a neighbor) 
(22) 
(23) endif 
(24)Until (OPEN is empty) OR (OPEN is full) 

Given an initial partitioning, every PE first sets up its 
neighbourhood to find out which PES are in its neighbor. 
Some initial nodes are generated for each PE and then 
starting from initial nodes every PE will run some 
iterations of sequential A*. PES then interact with each 
other for exchanging their best nodes and to broadcast their 
solutions. When a PE finds a solution, it records it into a 
common file opened by all PES. A PE which finds the 
solution does not expand nodes any further and waits to 
receive the solution from other PES. Finally, the best 
solution is the solution with the minimum costs among all 
PES. 

To illustrate the operation of the OAPS algorithm, we 
use the same example that was used earlier for the 
sequential assignment algorithm. This operation is shown 
in Figure 3. Here we assume that the parallel algorithm 
runs on three PES connected together as a linear chain, Le, 
PEo and PE2 have one neighbour PEI, while PE1 has two 
neighbours since it is in the middle. First, three nodes are 
generated as in the sequential case. Then through the initial 
partitioning, these nodes are assigned to 3 PES. Each PE 
then goes through a number of steps. In each step, there are 
two phases: the expansion phase and the communication 
phase. In the expansion phase, a PE sequentially expands 
its nodes (the newly created nodes are shown with thick 
borders). It will keep on expanding until it reaches the 
threshold (U) - this is set to be 3 in this example. In the 
communication phase, a PE selects a neighbour and then 
sends its best cost node to it. The selection of neighbours 
is in a RR fashion. In the example, the exchange of the best 
cost nodes among the neighbours is shown by the dashed 
arrows. In the 5th step, PE1 finds its solution, broadcasts it 

Expand the best cost node from OPEN 

if (it’s better than previously received Solutions) 
Broadcast the Solution to all PES 

Inform neighbors that I am done 

Remove this from neighborhood list 
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to other PES and then stops. In the final step, PE0 also 
broadcasts (not shown here for the sake of simplicity) its 
solution to PE2 which finally records its solution and stop. 

5 Experimental Results 
For experiments we used task graphs with 10-28 nodes 

with 5 different values of (communication-to-computation 
ratio) CCR and processor graphs of 4 nodes connected in 
3 different topologies. For the OAPS algorithm, we used 2, 
4,8, and 16 Paragon PES. 
5.1 Workload Generation 

To test the proposed sequential and parallel algorithms, 
we generated a library of task graphs as well as 3 processor 
topologies. In distributed systems, there is usually a 
number of process groups with heavy interaction within 
the group, and almost no interaction with processes outside 
the group [2] .  So, using this intuition, first we generated a 
number of primitive task graph structures such as pipeline, 
ring, server, and interference graphs of 2 to 8 nodes. 

Complete task graphs were generated by randomly 
selecting these primitives structures and combining them 
until the desired number of tasks are reached. This is done 
by first selecting a primitive graph and then combining it 
with a newly selected graph by a link labelled 1; the last 
node is connected back to the first node. To generate the 
execution costs for the nodes, 0.1,0.2,1 .O, 5.0 and 10.0 are 
used as communication to cost ratios (CCR). Since we are 
assuming the processors to be heterogeneous 
(homogeneous processors are a special case of 
heterogeneous processors), the execution cost varies from 
processor to processor in the execution cost matrix (X) but 
the average remains the same. These costs are generated in 
the following manner. For example, if the total 
communication cost (sum of the cost of all of the edges 
connected to this task) of task i is 16 and CCR used is 0.2 
then, average execution cost of i will be, 16 /0.2 = 80. 
5.2 Speed-up Using Parallel Algorithm 

algorithm using various number 
speedup is defined as the running time of the serial 
algorithm over the running time of the parallel algorithm. 
It is observed that the speedup increases with an increase 
in problem size. Also the problems with CCR equal to 0.1 
and 0.2 give good speedup in most of the cases, since the 
running time of serial algorithm is longer compared to 
larger CCRs. Table 1 presents the speedup for fully- 
connected topology of 4 processors with CCR equal to 0.1. 
Second column is the running time of the serial algorithm 
while third, fourth and fifth columns are the speed up of the 
parallel algorithm over serial one for 2, 4, 8 and 16 
Paragon PES, respectively. Bottom row of the table is the 
average speedup of all the tas raphs considered. The 
values of average speedup for 
line topoIogies are shown graphica 

This sub-section discusses the spe 

~ 
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6 Conclusions 
In this paper, we proposed a aparallel algorithm for 

optimal assignments of tasks to processors. We considered 
the problem under most relaxed assumption such as 
arbitrary task graph including arbitrary costs on the nodes 
and edges of the graph, and processors connected through 
an interconnection network. Our algorithm can be used for 
homogeneous or heterogeneous processors although in 
this paper we only considered the heterogeneous cases. We 
believe that to the best of our knowledge, ours is the first 
attempt in designing a parallel algorithm for the optimal 
task-to-processor assignment problem. There are a number 
of further studies that are required to understand the 
behavior of the parallel algorithm and some possible fine 
improvements. We are currently exploring these 
possibilities. 
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Figure 3: The operation of the parallel assignment algorithm using three PES. 
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Table 1 : Speedup with the parallel algorithm using fully-connected topology (CCR=O. 1). 
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Figure 4: Average speedup of the parallel algorithm. 
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